Научная книга Поиск по сайту
Главная
Поиск по сайту

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ
Короткий путь http://bibt.ru

Адрес этой страницы' ?>

<<Предыдущая страница Оглавление книги Следующая страница>>

§ 5. ДВИЖЕНИЕ И ЕГО ВИДЫ

Если положение данного тела относительно окружающих пред-метов с течением времени изменяется, то данное тело движется. Если положение тела остается неизменным, то тело находится в покое. За единицу времени в механике принимается 1 сек. Под промежутком времени подразумевается число t сек, отделяющих два каких-нибудь последовательных явления.

Наблюдая движение какого-нибудь тела, часто можно видеть, что движения различных точек тела различны; так при качении колеса по плоскости центр колеса движется по прямой линии, а точка, лежащая на окружности колеса, описывает кривую (циклоиду) ; пути, пройденные этими двумя точками за одно и то же время (за 1 оборот), также различны. Поэтому изучение движения тела начинают с изучения движения отдельной точки.

Линия, описываемая движущейся точкой в пространстве, называется траекторией этой точки.

Прямолинейным движением точки называется такое движение, траектория которого —прямая линия.

Криволинейное движение — это движение, траектория которого не является прямой линией.

Движение определяется направлением, траекторией и пройденным за определенный промежуток времени (период) путем.

Равномерным движением точки называется такое движение, при котором отношение пройденного пути S к соответствующему промежутку времени сохраняет постоянную величину для любого промежутка времени, т. е.

S/t = const (постоянная величина).(15)

Это постоянное отношение пути ко времени называется скоростью равномерного движения и обозначается буквой v. Таким образом, v= S/t. (16)

Решая уравнение относительно S, получим S = vt, (17)

т. е. величина пути, пройденного точкой при равномерном движении, равна произведению скорости на время. Решая уравнение относительно t, находим, что t = S/v,(18)

т. е. время, в течение которого точка при равномерном движении проходит данный путь, равно отношению этого пути к скорости движения.

Эти равенства являются основными формулами равномерного движения. По этим формулам определяется одна из трех величин S, t, v, когда две других известны.

Размерность скорости v = длина / время = м/сек.

Неравномерным движением называется такое движение точки, при котором отношение пройденного пути к соответствующему промежутку времени не является постоянной величиной.

При неравномерном движении точки (тела) часто удовлетворяются нахождением средней скорости, которая характеризует быстроту движения за данный промежуток времени, но не дает представления о скорости движения точки в отдельные моменты, т. е. об истинной скорости.

Истинная скорость неравномерного движения — это та скорость, с которой движется точка в данный момент.

Средняя скорость движения точки определяется по формуле (15).

Практически часто удовлетворяются средней скоростью, принимая ее как истинную. Например, скорость стола у продольно-строгального станка постоянная, за исключением моментов начала рабочего и начала холостого ходов, но этими моментами в большинстве случаев пренебрегают.

У поперечно-строгального станка, у которого вращательное движение преобразуется в поступательное кулисным механизмом, скорость ползуна неравномерна. В начале хода она равна нулю, затем возрастает до какой-то наибольшей величины в момент вертикального положения кулисы, после чего начинает уменьшаться и к концу хода становится опять равной нулю. В большинстве случаев при расчетах пользуются средней скоростью vср ползуна, которую принимают как истинную скорость резания.

Скорость ползуна поперечно-строгального станка с кулисным механизмом можно охарактеризовать как равномерно-переменную.

Равномерно-переменное движение — это движение, при котором за одинаковые промежутки времени скорость увеличивается или уменьшается на одинаковую величину.

Скорость равномерно-переменного движения выражается формулой v = v0 + at, (19)

где v—скорость равномерно-переменного движения в данный момент, м/сек;

v0 — скорость в начале движения, м/сек; а — ускорение, м/сек2.

Ускорением называется изменение скорости в единицу времени.

Ускорение а имеет размерность скорость / время = м / сек2 и выражается формулой a = (v-v0)/t. (20)

При v0 = 0, a = v/t.

Путь, пройденный при равномерно-переменном движении, выражается формулой S= ((v0+v)/2)* t = v0t+(at2)/2. (21)

Поступательным движением твердого тела называется такое движение, при котором всякая прямая, взятая на этом теле, перемещается параллельно самой себе.

При поступательном движении скорости и ускорения всех точек тела одинаковы и в любой точке являются скоростью и ускорением тела.

Вращательным движением называется такое движение, при котором все точки некоторой прямой линии (оси), взятой в этом теле, остаются неподвижными.

При равномерном вращении в равные промежутки времени тело поворачивается на одинаковые углы. Угловая скорость характеризует величину вращательного движения и обозначается буквой ω (омега).

Связь между угловой скоростью ω и числом оборотов в минуту выражается уравнением: ω =(2πn)/60 = (πn)/30 град/сек. (22)

Вращательное движение является частным случаем криволинейного движения.

Скорость вращательного движения точки направлена по касательной к траектории движения и по величине равна длине дуги, пройденной точкой за соответствующий промежуток времени.

Скорость движения точки вращающегося тела выражается уравнением

v = (2πRn)/(1000*60)= (πDn)/(1000*60) м/сек, (23)

где п — число оборотов в минуту; R — радиус окружности вращения.

Угловое ускорение характеризует увеличение угловой скорости в единицу времени. Обозначается оно буквой ε (эпсилон) и выражается формулой ε =(ω - ω0) / t. (24)

Перейти вверх к навигации
Перепечатка материалов запрещена.
Помогите другим людям найти библиотеку разместите ссылку: